Refine Your Search

Topic

Author

Search Results

Technical Paper

Thermal Durability of a Ceramic Wall-Flow Diesel Filter for Light Duty Vehicles

1992-02-01
920143
The thermal durability of a large frontal area cordierite ceramic wall-flow filter for light-duty diesel engine is examined under various regeneration conditions. The radial temperature distribution during burner regeneration, obtained by eight different thermocouples at six different axial sections of a 75″ diameter x 8″ long filter, is used together with physical properties of the filter to compute thermal stresses via finite element analysis. The stress-time history of the filter is then compared with the strength and fatigue characteristics of extruded cordierite ceramic monolith. The successful performance of the filter over as many as 1000 regenerations is attributed to three important design parameters, namely unique filter properties, controlled regeneration conditions, and optimum packaging design. The latter induces significant radial and axial compression in the filter thereby enhancing its strength and reducing the operating stresses.
Technical Paper

Running Loss Test Procedure Development

1992-02-01
920322
A running loss test procedure has been developed which integrates a point-source collection method to measure fuel evaporative running loss from vehicles during their operation on the chassis dynamometer. The point-source method is part of a complete running loss test procedure which employs the combination of site-specific collection devices on the vehicle, and a sampling pump with sampling lines. Fugitive fuel vapor is drawn into these collectors which have been matched to characteristics of the vehicle and the test cell. The composite vapor sample is routed to a collection bag through an adaptation of the ordinary constant volume dilution system typically used for vehicle exhaust gas sampling. Analysis of the contents of such bags provides an accurate measure of the mass and species of running loss collected during each of three LA-4* driving cycles. Other running loss sampling methods were considered by the Auto-Oil Air Quality Improvement Research Program (AQIRP or Program).
Technical Paper

Central Port Fuel Injection

1992-02-01
920295
The primary objective of Central Port Fuel Injection is to be a low cost multi-point fuel injection system with the additional attributes of compactness, packaging flexibility, and reliability. Performance of this fuel system closely resembles that of a simultaneous multi-point fuel injection system in flow control, dynamic range, cylinder-to-cylinder distribution, idle quality, transient response, and emissions. The system provides significantly improved performance in the areas of hot fuel handling, cold startability, vacuum and voltage sensitivity and system noise. This performance comes at a significant cost savings and greater packaging and targeting flexibility over a conventional multi-point fuel injection system.
Technical Paper

Development of a PEM Fuel Cell System for Vehicular Application

1992-08-01
921541
Allison Gas Turbine Division of General Motors is performing the first phase of a multiphase development project aimed at demonstrating an electric vehicle based on a proton exchange membrane (PEM) fuel cell. This work is sponsored by the Office of Transportation Technologies of the U.S. Department of Energy (DoE) through the DoE's Chicago Field Office (Contract No. DE-AC02-90CH10435). This work complements major efforts under way to produce electric vehicles for reducing pollution in key urban areas. Battery powered vehicles will initially satisfy niche markets where limited range vehicles can meet commuter needs. The PEM fuel cell/battery hybrid using methanol as fuel potentially offers an extremely attractive option to increasing the range, payload, and/or performance of battery powered vehicles.
Technical Paper

Software Test and Calibration Using Virtual Manufacturing

2017-03-28
2017-01-0536
This paper describes how distributive computing along with statistical subsystem simulation can be applied to produce near production ready embedded vehicle software and calibrations. Coupling distributive computing and statistical simulation was first employed over a decade ago at General Motors to design and analyze propulsion subsystem hardware. Recently this method of simulation has been enhanced extending its capabilities to both test embedded vehicle code as well as develop calibrations. A primary advantage of this simulation technique is its ability to generate data from a statistically significant population of subsystems. The result is the acquisition of an optimal data set enabling the development of a robust design now including both embedded code and calibrations. Additionally it has been shown that there are significant economic advantages in terms of time and cost associated with this type of development when compared to traditional method.
Technical Paper

Stamped-Cover Vibro-Acoustic Optimization for Diesel Automotive Applications

2016-06-15
2016-01-1772
Current Diesel engines development is facing challenging vibro-acoustic requirements and at the same time is struggling with the need to reduce as much as possible the cost and the weight of the engine. The latter obviously has become a key player for fuel consumption reduction. Large covers are commonly used in the base engine design and their noise contribution to total radiated noise is not negligible. Typical covers architecture shows thick cast and ribbed plates, meaning heavy and expensive covers. An interesting option is represented by using thin stamped covers either in aluminum or in steel, that have to show a low vibrational response. The current paper focuses on the structural optimization of such a peculiar design, trying to mitigate as much as possible its noise radiation with the intent to avoid any additional acoustic enabler (e.g. wrapping by means of acoustic foams) that will increase the final cost of the component.
Technical Paper

Estimation of DPF Soot Loading through Steady-State Engine Mapping and Simulation for Automotive Diesel Engines Running on Petroleum-Based Fuels

2017-09-04
2017-24-0139
The aim of the present study is to improve the effectiveness of automotive diesel engine and aftertreatment calibration process through the critical evaluation of several methodologies to estimate the soot mass flow produced by diesel engines fueled by petroleum fuels and filtered by Diesel Particulate Filters (DPF). In particular, its focus has been the development of a reliable simulation method for the accurate prediction of the engine-out soot mass flow starting from Filter Smoke Number (FSN) measurements executed in steady state conditions, in order to predict the DPF loading considering different engine working conditions corresponding to NEDC and WLTP cycles. In order to achieve this goal, the study was split into two main parts: Correlation between ‘wet PM’ (measured by soot filter weighing) and the ‘dry soot’ (measured by the Micro Soot Sensor MSS).
Technical Paper

Evaluation of a High Speed, High Resolution Gas Chromatography Instrument for Exhaust Hydrocarbon Speciation

2005-04-11
2005-01-0683
The ozone forming potential (OFP) and specific reactivity (SR) of tailpipe exhaust are among the factors that determine the environmental impact of a motor vehicle. OFP and SR measurements require a lengthy determination of about 190 non-methane hydrocarbon species. A rapid gas chromatography (GC) instrument has been constructed to separate both the light (C2 - C4) and the midrange (C5 - C12) hydrocarbons in less than 10 minutes. The limit of detection is about 0.002 parts per million carbon (ppmC). Thirty exhaust samples from natural gas vehicles (NGV's) were analyzed to compare the rapid GC method with the standard GC method, which required 40-minute analyses on two different instruments. In general, evaluation of the commercial prototype from Separation Systems, Inc., indicates that a high speed, high resolution gas chromatograph can meet the need for fast, efficient exhaust hydrocarbon speciation.
Technical Paper

Chemiluminescence Measurements of Homogeneous Charge Compression Ignition (HCCI) Combustion

2006-04-03
2006-01-1520
A spectroscopic diagnostic system was designed to study the effects of different engine parameters on the chemiluminescence characteristic of HCCI combustion. The engine parameters studied in this work were intake temperature, fuel delivery method, fueling rate (load), air-fuel ratio, and the effect of partial fuel reforming due to intake charge preheating. At each data point, a set of time-resolved spectra were obtained along with the cylinder pressure and exhaust emissions data. It was determined that different engine parameters affect the ignition timing of HCCI combustion without altering the reaction pathways of the fuel after the combustion has started. The chemiluminescence spectra of HCCI combustion appear as several distinct peaks corresponding to emission from CHO, HCHO, CH, and OH superimposed on top of a CO-O continuum. A strong correlation was found between the chemiluminescence light intensity and the rate of heat release.
Technical Paper

A Sampling System for the Measurement of PreCatalyst Emissions from Vehicles Operating Under Transient Conditions

1993-03-01
930141
A proportional sampler for vehicle feedgas and tailpipe emissions has been developed that extracts a small, constant fraction of the total exhaust flow during rapid transient changes in engine speed. Heated sampling lines are used to extract samples either before or after the catalytic converter. Instantaneous exhaust mass flow is measured by subtracting the CVS dilution air volume from the total CVS volume. This parameter is used to maintain a constant dilution ratio and proportional sample. The exhaust sample is diluted with high-purity air or nitrogen and is delivered into Tedlar sample bags. These transient test cycle weighted feedgas samples can be collected for subsequent analysis of hydrocarbons and oxygenated hydrocarbon species. This “mini-diluter” offers significant advantages over the conventional CVS system. The concentration of the samples are higher than those collected from the current CVS system because the dilution ratio can be optimized depending on the fuel.
Technical Paper

SIR Sensor Closure Time Prediction for Frontal Impact Using Full Vehicle Finite Element Analysis

1993-03-01
930643
This paper describes an analytical method to predict the sensor closure time for an airbag (Supplemental Inflatable Restraint - SIR) system in frontal impacts. The analytical tools used are the explicit finite element code, an in-house sensor closure time prediction program, and a full vehicle finite element model. Nodal point information obtained from the full vehicle finite element simulation is used to predict the sensor closure time of the airbag system. This analytical method can provide the important crash signature information for a SIR system development of a new vehicle program. In this paper, 0-degree frontal impacts at four different impact speeds with two different bumper energy absorption systems are studied using the non-linear finite element computer program DYNA3D. It is concluded that this analytical method is very useful to predict the SIR sensor closure time.
Technical Paper

The Electronically Controlled 6.5L Diesel Engine

1993-11-01
932983
For model year 1994, General Motors has completed the roll out of the 6.5L Diesel Engine, with the introduction of the light duty certified naturally aspirated and turbocharged engines. At the heart of the expanded use of the 6.5L is a new electronic powertrain control system. The objectives for this system were to produce an engine that has less variation, is easier to assemble, low cost and capable of meeting both heavy and light duty future emissions requirements. Control features include Fuel Quantity and Timing, EGR, Wastegate, Glow Plugs, Transmission, Cruise Control and Diagnostics.
Technical Paper

Structural Composite Floorpan: Design Synthesis, Prototype, Build and Test

1992-06-01
921096
A design synthesis approach is used to design and analyze a Resin-Transfer-Molded (RTM) composite floorpan to meet the product requirements and assess the structural performance. The design envelope is based on packaging constraints representative of a production vehicle to ensure a feasible design intent. Finite element analysis of the composite design is used to guide the design and integrate all of the product performance requirements to achieve a feasible design concept. Issues discussed include the design and analysis, design features, composite material tailoring, prototype fabrication, vehicle build, and product validation. Stiffness, strength and durability tests were performed on the floorpan and the fully trimmed vehicle, and all requirements were met.
Technical Paper

Simulation of the Hybrid III Dummy Response to Impact by Nonlinear Finite Element Analysis

1994-11-01
942227
The Hybrid III dummy is an anthropomorphic (humanlike) test device, generally used in crashworthiness testing to assess the extent of occupant protection provided by the vehicle structure and its restraint systems in the event of vehicle crash. Lumped-parameter analytical models are commonly used to simulate the dummy response. These models, by virtue of their limited number of degrees of freedom, can neither represent accurate three-dimensional dummy geometry nor detailed structural deformations. In an effort to improve the state-of-the-art in analytical dummy simulations, a set of finite element models of the Hybrid III dummy segments - head, neck, thorax, spine, pelvis, knee, upper extremities and lower extremities - were developed. The component models replicated the hardware geometry as closely as possible. Appropriate elastic material models were selected for the dummy “skeleton”, with the exterior “soft tissues” represented by viscoelastic materials.
Technical Paper

Rear Full Overlap High Speed Car-to-Car Impact Simulation

1995-04-01
951085
A rear full overlap car-to-car high speed impact simulation using the DYNA3D Finite Element Software was performed to examine the crush mode for rear structure of a vehicle and to observe the effect of rear bumper system in order to maintain the fuel system integrity. The study was conducted first for two different bumper system configurations, namely: (1) validating the model for struck vehicle with steel rear bumper system, (2) simulating rear end collision with composite rear bumper system attached to the rear rails of struck vehicle. Later a third simulation of the model was conducted with a viable design modification to the composite bumper system for improved crashworthiness. It was identified that a more comprehensive FEA model of the bullet car including front end structure, powertrain components, cooling system and other components which constitute the load paths should be incorporated in the analysis to obtain more meaningful correlation and crashworthiness prediction.
Technical Paper

The Use of Finite Element Analysis to Predict Body Build Distortion

1995-04-01
951120
Finite element methods can be used to simulate a class of variation problems induced by build distortion in the assembly process. The FEM approach was used to study two representative assembly problems: 1) Front fender mounting and resulting distortion due to various fastening sequences; and, 2) Coupe door assembly process and resulting deformation due to clamping and welding of flexible sheet metal parts. FEM is used to generate sensitivities of various process conditions. Correlation with measured Co-ordinate Measuring Machine (CMM) data is shown. The use of FEM to simulate manufacturing/assembly processes in the automotive industry is in it's infancy. As the new methods are developed this capability can be used to study the assembly process and provide guidance in designing more robust parts and assembly processes.
Technical Paper

Investigation of Fluid Flow Through a Vane Pump Flow Control Valve

1995-04-01
951113
The recent development of a new vane-type pump for power steering applications involved paying special attention to the fluid flow dynamics within the pump casing, especially in the flow control or supercharge region, where excess pump fluid flow is diverted to the intake region. Durability testing of initial designs revealed the presence of cavitation damage to the pump casing in the supercharging region. Subsequent Computational Fluid Dynamics (CFD) analyses as well as experimental Flow Visualization studies aided in resolving the cavitation-damage problem. The purpose of this paper is to describe the processes used in the CFD analyses and flow visualization studies. A two-dimensional (2D) convergence study was conducted to determine the CFD meshing requirements across the small orifice at the intersection of the flow-control valve and the supercharge port. An iterative procedure was employed to determine the operating position of the flow-control valve.
Technical Paper

Numerical Simulation of a Vehicle Side Impact Test: Development. Application and Design Iterations

1996-02-01
960101
This paper describes a numerical simulation technique applicable to the FMVSS 214 side impact test through the use of the finite element method (FEM) technology. The paper outlines the development of the side impact dummy (SID), moving deformable barrier (MDB) and the test vehicle FEM models, as well as the development of new advanced constitutive models of materials and algorithms in LS-DYNA3D which are related to the topic. Presented in the paper are some initial simulation problems which were encountered and solved, as well as the correlation of the simulation data to the physical test.
Technical Paper

The 1997 Chevrolet Corvette Structure Architecture Synthesis

1997-02-24
970089
This paper describes the design, synthesis-analysis and development of the unique vehicle structure architecture for the fifth generation Chevrolet Corvette, ‘C5’, which starts in the 1997 model year. The innovative structural layout of the ‘C5’ enables torsional rigidity in an open roof vehicle which exceeds that of all current production open roof vehicles by a wide margin. The first structural mode of the ‘C5’ in open roof configuration approaches typical values measured in similar size fixed roof vehicles. Extensive use of CAE and a systems methodology of benchmarking and requirements rolldown were employed to develop the ‘C5’ vehicle architecture. Simple computer models coupled with numerical optimization were used early in the design process to evaluate every design concept and alternative iteration for mass and structural efficiency.
Technical Paper

Development and Validation of Diamond-Like Carbon Coating for a Switching Roller Finger Follower

2012-09-24
2012-01-1964
An advanced variable valve actuation system is developed that requires a coating with high stress loading capability on the sliding interfaces to enable compact packaging solutions for gasoline passenger car applications. The valvetrain system consists of a switching roller bearing finger follower (SRFF) combined with a dual feed hydraulic lash adjuster and an oil control valve. The SRFF contains two slider pads and a single roller to provide discrete variable valve lift capability on the intake valves. These components are installed on a four cylinder gasoline engine. The motivation for designing this type of variable valve actuation system is targeted to improve fuel economy by reducing the air pumping losses during partial load engine operation. This paper addresses the technology developed to utilize a Diamond-like carbon (DLC) coating on the slider pads of the SRFF.
X